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Abstract 
 

It has been demonstrated that methods including feature selection (FS), hyper-parameter 

adjusting, and model ensembling can improve the performance of binary classifiers. In this study, 

we propose a framework that aims at improving risk modeling by simultaneously using the 

above-mentioned model-improving methods. The feasibility of the framework is assessed on a 

dataset containing commercial information of the US companies. Three FS methods including 

weight by Relief, weight by information gain, and weight by correlation, are employed on each of 

the four classifiers including logistic regression (LR), decision tree (DT), neural network (NN), 

and support vector machine (SVM). After identifying the most appropriate FS method for each 

classifier, the hyper-parameters are then adjusted. Finally, each classifier is ensembled using 

bagging and boosting techniques. To investigate the effect of these model-improving methods, the 

model performance is evaluated using classification accuracy, area under the curve (AUC), false 

positive rate (FPR), and false negative rate (FNR). The results exhibited that FS and boosting on 

LR could largely increase its accuracy and decrease FNR. On the contrary, regularization via 

hyper-parameter adjusting on LR cannot further improve model performance. DT is not sensitive 

to any of the fore-mentioned methods. The beneficial effect of model-improving methods is 

obvious on NN with respect to FPR and FNR while negligible in accuracy. SVM is no longer a 

good base classifier to be ensembled after applying FS and hyper-parameter adjusting methods. 

The proposed framework provides a reference for the simultaneous utilization of these model-

improving methods in business delinquency modeling. 

 
Keywords: feature selection; hyper-parameter adjusting; ensemble model; business delinquency. 

 

1 Introduction 
 

One of the most popular techniques to identify risk is binary classification modeling, i.e., modeling whether or not 

certain business will go bankrupt or the probability of going bankrupt. According to Kim and Gu (2006), logistic 

regression (LR) is a traditional technique that is widely used in the financial and risk modeling domain because of 

its good ability to provide clear interpretability as well as consistent model performance. Decision tree (DT), 

neural network (NN), and support vector machine (SVM) are the three popular alternatives for LR since they can 

model the complex nonlinear relationships between predictors. For example, Tsai and Wu (2008), Zhang et al. 

(2010), West (2000) and Khandani et al. (2010), Wang and Priestley (2017), and Zhou et al. (2018) have 

successfully employed the above-mentioned approaches in their investigations. 
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Many researchers focus on investigating model-improving approaches that could bene t model performance in the 

financial domain. There are three main approaches that have received formal investigative attention. The first 

approach is feature selection (FS). Huang and Wang (2006) applied a genetic algorithm-based FS for SVM that 

could significantly improve the classification accuracy. Chen (2012) developed an integrated FS method in credit 

rating classification. In the study by Wang et al. (2012), a scatter search metaheuristic based FS method is used 

for credit scoring. The second approach to improve model performance in the financial domain is hyper-parameter 

adjusting. According to Huang and Wang (2006), optimizing the kernel functions in SVM can significantly 

improve the classification accuracy. Xia et al. (2017) proposed a boosted decision tree approach using Bayesian 

hyper-parameter optimization to improve credit risk modeling. The third approach that is beneficial to business 

risk modeling is model ensembling. Koutanaei et al. (2015) conducted a hybrid data mining model for credit 

scoring and showed that ensemble on NN can significantly improve the model performance. Yao and Lian (2016) 

pointed out that SVM based ensemble models can serve as an alternative for LR in financial modeling. 
 

Based on the aforementioned studies, we propose a framework (illustrated in Fig. 1 and discussed in detail in 

Section 3.3) that combines three model-improving approaches including FS, hyper-parameter adjusting, and 

model ensembling together. This framework aims at improving the model performance using criteria including 

classification accuracy, area under the curve (AUC), false positive rate (FPR), and false negative rate (FNR). The 

feasibility of the framework is tested on a commercial dataset approved by Equifax (located at Atlanta, GA, 

USA). By simultaneously considering the above-mentioned three model-improving methods, the proposed 

framework can provide a comprehensive comparison of the performance of different classifiers when using 

different FS methods, different hyper-parameter adjusting values, and different ensembling approaches. 
 

The rest of the paper is organized as follows. Since different FS methods and several binary classifiers are used in 

this study, we will first review the relevant algorithms in Section 2. Section 3 provides a detailed description 

about our experimental design, which aims at using our proposed framework to improve business delinquency 

modeling. The experimental results are elaborated in Section 4. Section 5 addresses the conclusions. 
 

2 Algorithms 
 

In this section, we review the algorithms related to the three widely used model-improving approaches. Since 

most of our experiments (discussed in detail in Section 3) are elaborated in the RapidMiner data mining package 

developed in R, the option names for parameter settings for FS as well as hyper-parameter adjusting in 

RapidMiner are also discussed. 
 

2.1 Feature selection methods 
 

FS refers to the selection of the most appropriate subset of features with strong ability to represent relevant 

information provided in the dataset. As discussed in Salappa et al. (2007), FS algorithms have several benefits 

such as decreasing the noise and reducing computational cost that is typically associated with in-creased 

classification performance. In this study, three FS methods are applied: weight by Relief, weight by information 

gain, and weight by correlation. Relief is an algorithm developed in Kira and Rendell (1992a) and Kira and 

Rendell (1992b). As quoted in the RapidMiner documentation written by Akthar et al. (2012), ‘Relief estimates 

the quality of features according to how well their values distinguish between the instances of the same and 

different classes that are near each other’. In RapidMiner, the features are weighted by Relief and sorted 

according to the weights. Similarly, according to Guyon and Elisseeff (2003), the weight by information gain 

method and the weight by correlation method sort the variables according to its information gain and its 

correlation with the dependent variable, respectively. Variables with higher weights denote higher relevance to the 

dependent variables. In RapidMiner, the parameter ‘weight relation’ controls the number of features selected and 

we investigate the effect of the above-mentioned three FS methods by changing the value of this parameter. For 

simplicity, we use the terms ‘Relief’, ‘information gain’, and ‘correlation’ for the three FS methods, respectively. 
 

2.2 Binary classifiers along with hyper-parameters 
 

Logistic regression LR describes the relationship between the input variables (x1, x2, …, xn) and the predicted 

probability of the event p defined in Eq. (1). According to Menard (2018), the unknown parameters 

( ) were es-timated by maximizing the likelihood function of LR defined in Eq. (2).  
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In the studies of Le Cessie and Van Houwelingen (1992) and Cornillon and Matzner-Lober (2011), it has been 

stated that combining regularization methods such as ridge regression (i.e., using L2 penalized least squares to 

shrink the coefficients of correlated predictors equally towards zero) and Least Absolute Shrinkage and Selection 

Operator (LASSO, i.e., using L1 penalized least squares to shrink some coefficients to zero) together with LR can 

reduce the potential multicollinearity and overfitting problems. In this study, the regularization of LR is applied 

by controlling the parameter ‘alpha’ in RapidMiner. 
 

                (1) 

 

  (2) 
 

Decision tree DT is a top-down tree structure that contains several nodes, leaves, and branches. Each node is built 

by searching the optimal splits on input variables based on different criteria such as entropy and information gain. 

In Witten et al. (2016), the entropy is calculated using Eq. (3), where c is the number of classes in the dependent 

variable and p(j|t) is the relative frequency of class j at node t. The information gain is calculated using Eq. (4), 

where p is the parent node that has  been split into k partitions, and ni is the number of observations in partition i. 

In this study, we use gain ratio (default setting in RapidMiner) to select the splitting variable for each node. 

According to Naik and Samant (2016), gain ratio is a variant of information gain that allows the breadth and 

uniformity of the variable values. Song and Ying (2015) pointed out that using stopping rules on DT such as 

limiting the depth of the tree or limiting the number of records in a leaf can prevent the overfitting problems. In 

this study, we investigate the effect of the tree depth on the classification performance by changing the hyper-

parameter ‘maximal depth’ in RapidMiner. 
 

                             (3) 
 

                      (4) 

 

Neural network NN aims at learning the non-linear relationship between the dependent and independent 

variables and has been frequently used in business risk modeling. As depicted by Gurney (2014), NN consists of 

input and output layers, as well as a hidden layer. The training process contains forward propagation and 

backward propagation. In the forward propagation, it transforms the input variables into high level features by 

using the activation functions in the hidden units contained in the hidden layer. In the backward propagation, it 

adjusts the weights by minimizing the loss function. According to Hecht et al. (2015), several hyper-parameters in 

NN including size of hidden layer, learning rate, and learning momentum need to be tuned for a better 

performance. In our study, we focus on investigating the effect of the hyper-parameter, the size of hidden layer, 

by changing the value of ‘hidden layers’ in RapidMiner. 
 

Support vector machine As stated in Cristianini et al. (2000), SVM aims at looking for the optimal separating 

hyperplane between the two classes by maximizing the marginal distance. It can be written as an optimization 

problem shown in Eq. (5), where (xi; yi) are the input data points, w and b are the parameters that defined the 

hyperplane and need to be trained, and h w; xii denotes the dot product between w and xi. In SVM, the kernel 

function that maps the input variables to a higher separable feature space needs to be optimized. In this study, the 

effect of different kernel functions on the model performance is examined by changing the value of ‘kernel type’ 

in RapidMiner. 
 

        (5) 

 
 

2.3 Ensemble approaches: bagging and boosting 
 

In contrast to the single/base classifiers, ensemble models use several base classifiers such as LR and DT in order 

to solve one problem. In Wang and Ma (2012), the ensemble approach has been used to improve the performance 

of risk modeling. In our study, we focus on improving business risk modeling via two ensembling approaches: 

bagging and boosting. According to Bauer and Kohavi (1998) that bagging algorithm is based on the majority 

voting concept, where base classifiers are built in parallel on different bootstrap subsets of training dataset.  
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Like bagging, the AdaBoost (Adaptive Boosting, the boosting algorithm available provided in RapidMiner) 

algorithm generates a set of classifiers and then applies voting logic. Different from bagging, which builds the 

classifiers independently, the AdaBoost generates the classifiers sequentially and changes the weights of the 

training instances based on the previously built classifiers. 
 

3 Experimental design 
 

3.1 Dataset description and pre-processing 
 

The dataset used for assessing the feasibility of the proposed framework is approved by Equifax. The dataset 

contains 36 separate subsets, with each subset representing quarterly financial information of d-identified US 

companies from 2006 to 2014. The data includes over 10 million observations and 305 independent variables 

including companies’ financial information such as non-financial account activities, telecommunication account 

activities, utility account activities, service account activities, industry account activities, liabilities, and liens. The 

target variable GOODBAD denotes a binary problem and can be defined as follows: good and bad business 

behaviors are those that have no past due activities in service account (GOODBAD = 0) and have past due 

activities (GOODBAD = 1), respectively. The percentage of past due behaviors (i.e., GOODBAD = 1) is about 

30%. 
 

Before using the dataset on the proposed framework, a stratified sampling procedure was used to obtain a 

randomly sampled subset of 2000 companies. Then a series of data pre-processing procedures were applied as 

follows: (1) Splitting the data into a training (80%) set and a validation set (20%); (2) Re-moving observations 

with missing values in the target variable GOODBAD; (3) Removing variables with missing percentage larger 

than 70% due to the incomplete information; (4) Missing value imputation based on the median values; (5) 

Normalization due to the various range of the variables. As a result of data pre-processing, 156 features were used 

for the implementation of the experiment. 
 

3.2 Performance evaluation 
 

Several model evaluation criteria are applied in this study. The first criterion used is the classification accuracy. 

True Positive (TP) and False Positive (FP) are outcomes identified as having past due activities correctly or 

mistakenly, respectively; and True Negative (TN) and False Negative (FN) as outcomes identified as no past due 

activities correctly or mistakenly, respectively. The classification accuracy can be expressed in Eq. (6). 

 

                        (6) 

 

Another evaluation criterion used is the AUC of the Receiver Operating Characteristic Curve (ROC), which 

shows the interaction between the true positive rate (TPR) and the false positive rate (FPR). Higher AUC denotes 

a better model performance. According to Yamane (1973), TPR, FPR, and FNR are defined in Eq. (7), (8), and 

(9), respectively. For the study in this paper, classification accuracy is the most important criterion for comparing 

different models since the primary goal of the study is to classify the business delinquency. AUC is the second 

important criterion since it is a common measure to evaluate binary classification models. Although FPR and 

FNR are more or less equivalent in many common classification studies, in risk modeling and hazard studies, 

how-ever, they should be emphasized differently. This have been discussed in detail in the study of Begueria 

(2006). Similarly, for the study in this paper, FNR is weighted more heavily than FPR. It is because a model 

containing a great number of false positives can imply the beneficial loss of a potentially punctual business while 

a false negative error may signify the much larger loan loss from the business delinquency. 

 

                       (7)  

 

                        (8)  

 

                       (9)  
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3.3 The proposed framework 
 

In this study, we propose a framework that aims at improving the performance of four binary classifiers for 

business delinquency classification through a series of model-improving methods. These model-improving 

methods consist of FS, hyper-parameter adjusting, and model ensembling. Fig. 1 shows the block diagram of the 

proposed framework. It contains four main stages and the details of each stage is described as follows: 
 

In stage 1, the dataset was pre-processed following the steps described in Section 3.1. Then, four binary classifiers 

including LR, DT, NN, and SVM, were implemented on the training set and their performances were evaluated on 

the validation set using the criteria described in Section 3.2. These models are identified as baseline models and 

are used as benchmark models to evaluate the effect of model-improving methods in stages. As illustrated in Fig. 

1, the baseline models obtained from stage 1 are labelled as LR(1), DT(1), NN(1), and SVM(1). 
 

In stage 2, the first model-improving method, FS, is used on the dataset in order to filter out the best subset of the 

features. The three FS methods used in this study include Relief, information gain, and correlation. In this study, 

the FS parameter ‘weight relation’ in RapidMiner controls the number of selected features. To follow the naming 

convention, we use ‘number of selected features’ as the name for the parameter ‘weight relation’ in the rest of this 

paper. With each change in the value of ‘number of selected features’, the selected features were used on each of 

the four classifiers for classification and evaluation. Finally, the model with best performance would be stored to 

enter the next stage. This could identify the best FS method along with the parameter settings for each classifier. 

Take LR as an example. The above-mentioned three FS methods will be applied on the dataset and LR will be 

implemented along with each change in the value of ‘number of selected features’. That is to say, for each of the 

FS methods, the values of ‘number of selected features’ will be set to 5, 10, 15, 20, 25, and 30 in this study (the 

reason of this setting is described in Section 4.1). For each change of ‘number of selected features’, a LR would 

be implemented resulting in 18 (i.e., three FS methods six values for the ‘number of selected features’) models. 

These models will be compared and the model with the best performance would be stored as LR(2). Similarly, 

DT(2), NN(2), and SVM(2) are obtained in stage 2. 
 

In stage 3, the second model-improving method, hyper-parameter adjusting, is carried out to further improve the 

model performance. Although there are many hyper-parameters to be adjusted, only one critical hyper-parameter 

is considered for each classifier in this study. The adjusting of the hyper-parameters is shown as follows: 

adjusting the regularization method controlled by ‘alpha’ in LR; adjusting the depth of the tree structure 

controlled by ‘maximal depth’ in DT; adjusting the size of the hidden layer controlled by ‘hidden layers’ in NN; 

and adjusting the kernel function controlled by ‘kernel type’ in SVM. The classifiers are implemented after each 

adjustment and the model with the best performance would be stored. The best models acquired in this stage are 

labelled as LR(3), DT(3), NN(3), and SVM(3). 
 

In stage 4, the last model-improving method, model ensembling, is performed on the models obtained from stage 

3. Two ensembling methods, including bagging and boosting, are investigated in this study. The acquired models 

are la-belled using the prefix of the ensembling method. For example, bagging and boosting method are used on 

LR(3) and the resulting models are labelled as LR(4bag) and LR(4boo), respectively. 
 

Finally, the performance of the models obtained from each stage will be compared. This can evaluate the effect of 

the above-mentioned three model-improving methods for different classifiers comprehensively. 
 

4   Experimental results 
 

In this section, the results of the parameter settings in FS methods as well as the hyper-parameter settings in 

modeling procedures are demonstrated. The performance of the models is compared and discussed using the 

criteria dis-cussed in Section 3.2. With respect to the analysis tool, hierarchical variable clustering is performed in 

SAS (version 9.4). RapidMiner Studio (version 9.0) is used for other analysis in the experimentation. Excluding 

the parameter set-tings discussed in this paper, other parameter values of the FS algorithms and the hyper-

parameters values of the classifiers are the default settings in Rapid-Miner. All the experiments are performed on 

a desktop computer with 3.3 GHz Intel Core i7 processor, 16GB RAM, and macOS system. 
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.	
Ensemble on each of the classifiers:

1. Bagging;

2. Boosting.

.	

1. Splitting into 80% training set and 20% validation set;

2. Removing observations with missing values in the target variable; 

3. Removing variables with missing percentage > 70%;

4. Missing value imputation based on the median values;

5. Data normalization.

.	 Weight by 

Relief

Weight by 

information gain

Weight by 

correlation

.	

Hyper-parameter adjusting for each classifier:

1. Adjusting regularization method for LR;

2. Adjusting maximal depth of tree for DT;

3. Adjusting size of hidden layer for NN;

4. Adjusting kernel function for SVM.

SVM

LR DT

NN

1. Baseline model:

LR(1); DT(1); 

NN(1); SVM(1).

four	classifiers:

SVM

LR DT

NN

2. Best model after feature selection:

LR(2); DT(2); 

NN(2); SVM(2).

SVM

LR DT

NN

3. Best model after hyper-parameter adjusting:

LR(3); DT(3); 

NN(3); SVM(3).

SVM

LR DT

NN

4. Model ensemble based on model from stage 3:

LR(4bag); LR(4boo); DT(4bag); DT(4boo);

NN(4bag); NN(4boo); SVM(4bag); SVM(4boo).
 

 
Fig. 1. The block diagram of the study framework. 

 
 

4.1 Parameter settings of feature selection methods 
 

The first model-improving method for improving risk modeling, FS along with the parameter settings, is 

implemented and discussed in this section. Although different FS methods have various parameters that need to 

be set, the parameter ‘number of selected features’ is investigated in more details in this study. This parameter 

plays a critical role in the modeling procedure for two reasons. One reason is that too many features tend to cause 

multicollinearity, which might affect the model performance. The other reason is that in risk modeling, a 

parsimonious while powerful model is preferred. Fig. 2 shows our initial analysis based on hierarchical variable 

clustering. It is found that 30 variables could ex-plain around 80% variation of the original dataset. Therefore, for 

the value of the parameter ‘number of selected features’, a series of the values ranging from 5 to 30 were 

examined. The output of FS is then used as input variables on LR, DT, NN, and SVM classifiers. 

 

 
Fig. 2. Result of hierarchical variable clustering. 
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Parameter settings in Relief method Table 1 demonstrated the model performance by using the Relief FS 

method. LR4 could reach the highest accuracy of valued 0.948 by using the value of 20 for the parameter ‘number 

of selected features’. This kind of parameter setting could also reach the highest AUC as well as lowest FPR and 

FNR. By setting the parameter ‘number of selected features’ to 25, DT5 results in highest accuracy (0.975), the 

third highest AUC (0.978), the third lowest FPR (0.014), and the third lowest FNR (0.051), respectively. 

Similarly, the value of 30 for the parameter ‘number of selected features’ demonstrates the best performance on 

SVM6. Although NN4 and NN6 have the same values in accuracy and AUC, NN6 is considered to have better 

performance due to its lower FNR. Therefore, for the Relief FS method, the final settings of the parameter 

‘number of selected features’ for LR, DT, NN, and SVM are 20, 25, 30, and 30, respectively. And the 

corresponding resulting models are LR4, DT5, NN6, and SVM6, respectively. 
 

Table 1. Model performance based on different parameter settings in Relief feature selection method. LR, DT, 

NN, and SVM denote logistic regression, decision tree, neural network, and support vector machine, respectively. 
 

Model 

Number of Selected 

Features Accuracy AUC FPR FNR 

      

LR1 5 0.858 0.898 0.064 0.333 

LR2 10 0.888 0.960 0.046 0.274 

LR3 15 0.933 0.970 0.018 0.933 

LR4/LR(2) 20 0.948 0.978 0.014 0.145 

LR5 25 0.935 0.971 0.025 0.162 

LR6 30 0.935 0.974 0.021 0.162 

      

DT1 5 0.943 0.974 0.057 0.060 

DT2 10 0.950 0.980 0.053 0.043 

DT3 15 0.970 0.977 0.068 0.970 

DT4 20 0.970 0.984 0.011 0.077 

DT5 25 0.975 0.978 0.014 0.051 

DT6 30 0.960 0.934 0.004 0.128 

      

NN1 5 0.928 0.966 0.042 0.145 

NN2 10 0.943 0.981 0.039 0.103 

NN3 15 0.968 0.983 0.103 0.968 

NN4 20 0.970 0.991 0.011 0.077 

NN5 25 0.968 0.991 0.014 0.077 

NN6/NN(2) 30 0.970 0.991 0.018 0.060 

      

SVM1 5 0.720 0.696 0.018 0.915 

SVM2 10 0.723 0.788 0.021 0.897 

SVM3 15 0.730 0.783 0.872 0.730 

SVM4 20 0.733 0.794 0.018 0.872 

SVM5 25 0.733 0.820 0.035 0.829 

SVM6 30 0.750 0.799 0.060 0.709 

      

 

Parameter settings in information gain method Table 2 shows the model performance by using information 

gain FS method. LR has the highest accuracy (0.935) by selecting either 15, 20, or 30 features via the information 

gain method. Considering that 30 features can result in relatively higher AUC and lower FNR compared with 15 

and 20 features, LR12 is selected as the best model based on information gain method. According to Table 2, for 

DT, NN, and SVM methods, increasing numbers of selected features does not have too much effect in neither 

AUC nor FNR while could result in obvious changes in FPR. For DT and NN classifiers, the highest accuracy 

value could be reached in DT11 by selecting 25 features and in NN12 by selecting 30 features, respectively.  
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For SVM, by selecting 15, 20, and 25 features could result in the same values in accuracy and AUC. Considering 

that FNR is lower when 25 features are selected, we decide to select 25 features for SVM after FS method. In 

summary, for the information gain FS method, the final settings of the parameter ‘number of selected features’ for 

LR, DT, NN, and SVM are 30, 25, 30, and 25, respectively. And the corresponding resulting models are LR12, 

DT11, NN12, and SVM11, respectively. 
 

Table 2. Model performance based on different parameter settings in information gain feature selection method. 

LR, DT, NN, and SVM denote logistic regression, decision tree, neural network, and support vector machine, 

respectively. 

 

Model 

Number of 

Selected Features Accuracy AUC FPR FNR 

      

LR7 5 0.913 0.936 0.011 0.274 

LR8 10 0.928 0.936 0.021 0.197 

LR9 15 0.935 0.936 0.018 0.179 

LR10 20 0.935 0.944 0.021 0.171 

LR11 25 0.930 0.936 0.028 0.171 

LR12 30 0.935 0.954 0.028 0.154 

      

DT7 5 0.975 0.981 0.011 0.060 

DT8 10 0.965 0.981 0.039 0.026 

DT9 15 0.963 0.981 0.039 0.034 

DT10 20 0.963 0.981 0.039 0.034 

DT11/DT(2) 25 0.983 0.981 0.011 0.034 

DT12 30 0.965 0.984 0.035 0.034 

      

NN7 5 0.923 0.849 0.004 0.256 

NN8 10 0.948 0.849 0.014 0.145 

NN9 15 0.930 0.849 0.071 0.068 

NN10 20 0.935 0.849 0.021 0.171 

NN11 25 0.953 0.849 0.021 0.111 

NN12 30 0.968 0.974 0.025 0.051 

      

SVM7 5 0.913 0.967 0.011 0.274 

SVM8 10 0.933 0.967 0.021 0.179 

SVM9 15 0.953 0.967 0.011 0.137 

SVM10 20 0.953 0.967 0.011 0.137 

SVM11 25 0.953 0.967 0.014 0.128 

SVM12 30 0.950 0.959 0.014 0.137 

      
 

Parameter settings in correlation method The results of the model performance by using correlation FS method 

is presented in Table 3. As can be discerned, changing the parameter of ‘number of selected features’ does not 

change the FPR too much for all the four classifiers. Moreover, when number of selected features exceed 15, the 

FPR value does not change for DT, NN, and SVM. The highest values of accuracy are 0.945 on LR16, 0.963 on 

DT14, and 0.960 on SVM14, respectively. By selecting 10 features, NN14 can result in highest ac-curacy and 

AUC measures. Although NN14, NN15, and NN18 have the same highest accuracy, NN14 have the highest AUC 

and thus is considered as the best model. Therefore, for the correlation FS method, the final settings of the 

parameter ‘number of selected features’ for LR, DT, NN, and SVM are 20, 10, 10, and 10, respectively. And the 

corresponding resulting models are LR16, DT14, NN14, and SVM14, respectively. 
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Table 3. Model performance based on different parameter settings in correlation feature selection method. LR, 

DT, NN, and SVM denote logistic regression, decision tree, neural network, and support vector machine, 

respectively. 

Model 

Number of 

Selected Features Accuracy AUC FPR FNR 

      

LR13 5 0.913 0.897 0.014 0.265 

LR14 10 0.943 0.962 0.018 0.154 

LR15 15 0.943 0.954 0.018 0.154 

LR16 20 0.945 0.952 0.018 0.145 

LR17 25 0.943 0.951 0.014 0.162 

LR18 30 0.943 0.964 0.018 0.154 

      

DT13 5 0.923 0.870 0.004 0.256 

DT14 10 0.963 0.978 0.025 0.068 

DT15 15 0.958 0.925 0.004 0.137 

DT16 20 0.958 0.925 0.004 0.137 

DT17 25 0.958 0.927 0.004 0.137 

DT18 30 0.953 0.932 0.004 0.154 

      

NN13 5 0.925 0.917 0.004 0.248 

NN14 10 0.965 0.990 0.007 0.103 

NN15 15 0.965 0.989 0.028 0.051 

NN16 20 0.963 0.989 0.014 0.094 

NN17 25 0.963 0.978 0.014 0.094 

NN18 30 0.965 0.981 0.014 0.085 

      

SVM13 5 0.918 0.812 0.004 0.274 

SVM14/SVM(2) 10 0.960 0.971 0.014 0.103 

SVM15 15 0.953 0.963 0.011 0.137 

SVM16 20 0.953 0.943 0.011 0.137 

SVM17 25 0.948 0.943 0.011 0.154 

SVM18 30 0.953 0.960 0.011 0.137 

      
 

Comparison of model performance by using three feature selection methods For each classifier, the best 

model based on each of the three FS methods is selected. The performance of these models is compared by using 

the accuracy measure. As mentioned above, LR4, DT5, NN6, and SVM6 are the best models based on Relief 

method. LR12, DT11, NN12, and SVM11 are the best models based on information gain method. LR16, DT14, 

NN14, and SVM14 are the best models based on correlation method. Fig. 3 compares the accuracy of these 12 

models. The results demonstrate that different FS methods have large effects on SVM accuracy. Information gain 

and correlation methods outperform the Relief method on SVM. On the other hand, the effect on accuracy from 

different FS methods is not obvious for LR, DT, nor NN. The highest accuracy of LR, DT, NN, and SVM can be 

achieved by using FS methods of Relief (‘number of selected features’ valued 20), information gain (‘number of 

selected features’ valued 25), Relief (‘number of selected features’ valued 30), and correlation (‘number of 

selected features’ valued 10), respectively. The corresponding models are LR4, DT11, NN6, and SVM14, 

respectively. These four models are labelled as LR(2), DT(2), NN(2), and SVM(2) in stage 2 illustrated by Fig. 1 

and will enter stage 3 for further analysis. 
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Fig. 3. Comparison of best classifiers based on three feature selection methods. 

 

Fig. 4 demonstrated the further comparison of the performance of LR4/LR(2), DT11/DT(2), NN6/NN(2), and 

SVM14/SVM(2) using AUC, FPR, and FNR. As it is clear, there is no large difference in accuracy, AUC, and 

FPR of the four classifiers while FNR shows an obvious difference. LR(2) has the highest FNR value than the rest 

three classifiers, indicating the poorer power of identifying businesses’ delinquency of logistic models. DT(2) 

depicts the lowest FNR as well as the lowest FPR among the four classifiers, indicating the great potential in the 

role of classifying business delinquency. 
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Fig. 4. Comparison of performance of LR4/LR(2), DT11/DT(2), NN6/NN(2), 

 and SVM14/SVM(2). 
 

 

4.2 Hyper-parameter settings of classifiers 
 

The second model-improving method for improving risk modeling, hyper-parameter settings for binary 

classifiers, is implemented and discussed in this section. Starting from LR(2), DT(2), NN(2), and SVM(2), a 

series of different values of hyper-parameters was used for each classifier and the value resulting in the best 

performance was used as the final hyper-parameter setting. 
 

Hyper-parameter settings in logistic regression In LR, the hyper-parameter ‘alpha’, which controls the 

distribution between the L1 and L2 penalty on the loss function, was altered. In RapidMiner, a value of 1 for 

alpha represents L1 penalty (i.e., LR with LASSO regularization), a value of 0 for represents L2 penalty (i.e., LR 

with ridge regularization), and a value of 0.5 represents a combination of L1 and L2 penalty (i.e., LR with elastic 

net regularization). Starting from LR4/LR(2), we consider the above-mentioned three regularizations. The results 

are demonstrated in Table 4. It is observed that the accuracy, AUC, FPR, and FNR are equal for models LR19, 

LR20, LR21, and LR22. This indicates that changing the regularization method (i.e., changing the setting of the 

hyper-parameter ‘alpha’) does not change the LR performance. In other words, it is shown that model 

regularization on LR is no long necessary after applying FS methods. Considering the parsimonious rule when 

selecting models, we selected LR without regularization (i.e., LR19) as the best model. This model is labelled as 

LR(3) as illustrated in Fig. 1 and will enter stage 4 for further analysis. 
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Hyper-parameter settings in decision tree In DT, the hyper-parameter ‘maximal depth’, which restricts the 

depth of the decision tree structure, was changed in RapidMiner. Since a too simple tree structure may produce 

poor performance while a too complex tree structure tends to result in overfitting, we limit the depth of the tree to 

between depths of 5 and 30. By changing the value of ‘maximal depth’, a series of experiments were implemented 

and DT algorithm was applied. As presented in Table 5, the performance of DT does not change with respect to 

accuracy, AUC, FPR, or FNR when the value of ‘maximal depth’ exceed 15. Therefore, the value of ‘maximal 

depth’ is set to 15 in this study and it is obvious that this setting can result in a higher accuracy compared to the 

default settings in RapidMiner (i.e., ‘maximal depth’ = 10). The corresponding model DT21 is labelled as DT(3) 

as illustrated in Fig. 1 and will enter stage 4 for further analysis. 
 

Table 4. Logistic regression performance based on different settings of hyper-parameter ‘alpha’. 

 

Model Regularization Alpha Accuracy AUC FPR FNR 

       

LR19/LR(3) None (default) / 0.948 0.978 0.014 0.145 

LR20 LASSO 1 0.948 0.978 0.014 0.145 

LR21 Ridge 0 0.948 0.978 0.014 0.145 

LR22 Elastic net 0.5 0.948 0.978 0.014 0.145 

       
 

Hyper-parameter settings in neural network In NN, the hyper-parameter ‘hidden layers’, which determines the 

size of the hidden layer, was changed. The default setting for this hyper-parameter in RapidMiner is 1 plus half of 

the summation of number of attributes and number of classes. As mentioned in Section 4.1, by selecting 30 

features using the Relief method can achieve the highest accuracy in NN. Therefore, for our study, the default 

value of ‘hidden layers’ is 1+(30+2)/2 = 17. Since the larger size of NN tends to cause longer training time, we 

aimed at looking for a NN structure with a relatively small size, but strong performance. Therefore, in our 

experiment, the value of ‘hidden layers’ changes from 4 to 8 and the performance of the resulting NNs is 

demonstrated in Table 6. The highest accuracy (0.973) is achieved when value of ‘hidden layers’ is 6 and the 

corresponding model is NN20. Compared with the default setting in RapidMiner (i.e., hidden layers = 17), NN 20 

results in a slightly lower AUC and higher FNR. On the other hand, NN20 with a hidden layer sized 6 could result 

in a lower FPR. Considering the much simpler structure of using a hidden layer sized 6 versus sized 17, we set the 

value of ‘hidden layers’ as 6 for the NN algorithm. The corresponding model NN20 is labelled as NN(3) as 

illustrated in Fig. 1 and will enter stage 4 for further analysis. 
 

Table 5. Decision tree performance based on different settings of hyper-parameter ‘maximal depth’. 
 

Model Max depth Accuracy AUC FPR FNR 

      

DT19 5 0.970 0.995 0.032 0.026 

DT20 10 (default) 0.983 0.991 0.011 0.034 

DT21/DT(3) 15 0.985 0.987 0.004 0.043 

DT22 20 0.985 0.987 0.004 0.043 

DT23 25 0.985 0.987 0.004 0.043 

DT24 30 0.985 0.987 0.004 0.043 

      
 

Table 6. Neural network performance based on different settings of hyper-parameter ‘hidden layers’. 
 

Model Max depth Accuracy AUC FPR FNR 

      

NN19 4 0.963 0.982 0.007 0.111 

NN20/NN(3) 6 0.973 0.971 0.004 0.085 

NN21 8 0.960 0.992 0.014 0.103 

NN22 

17 

(default) 0.970 0.991 0.018 0.060 
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Hyper-parameter settings in support vector machine In SVM, the hyper-parameter ‘kernel type’, which 

specifies the kernel function used, was altered. In this study, three types of the kernel function in RapidMiner 

were considered and compared: dot (i.e., inner product kernel function, default setting), polynomial (i.e., 

polynomial kernel function) and radial (i.e., radial basis kernel function). The performance of SVM based on 

different kernel functions are demonstrated in Table 7. It is obvious that radial basis kernel function has the best 

model performance with the highest accuracy, the highest AUC, the second lowest FPR and the lowest FNR. 

Then, the value of ‘kernel type’ is set to radial for SVM classifier. The corresponding model SVM21 is labelled as 

SVM(3) as illustrated in Fig. 1 and will enter stage 4 for further analysis. 
 

Table 7. Support vector machine performance based on different settings of hyper-parameter ‘kernel type’  
 

Model Kernel type Accuracy AUC FPR FNR 

      

SVM19 dot 0.960 0.971 0.014 0.103 

SVM20 polynomial 0.930 0.958 0.004 0.231 

SVM21/SVM(3) radial 0.973 0.978 0.011 0.068 

      
 

Comparison of model performance after hyper-parameter settings As mentioned above, the final hyper-

parameter settings for LR, DT, NN, and SVM are as follows: LR without regularization, max depth valued 15, 

hidden layer sized 6, and radial as kernel function, respectively. Using these hyper-parameter settings, the 

resulting models are LR19/LR(3), DT21/DT(3), NN20/NN(3), and SVM21/SVM(3), respectively. Fig. 5 provides 

model performance with accuracy, AUC, FPR, and FNR measures for further comparison. It shows that LR(3) 

has the worst accuracy performance while DT(3) has the best. DT(3) also performs best with respect to the AUC, 

FPR, and FNR measures. Similar as the result demonstrated in Fig. 4, LR(3) has the highest FNR value than the 

rest three classifiers while DT(3) depicts the lowest FNR as well as the lowest FPR values. SVM(3) can reach as 

high an accuracy as LR(3). The performance of NN(3) and SVM(3) are better than LR(3) considering the FNR 

measures. 

 

 
(a) Accuracy and AUC                                      (b) FPR and FNR 

 

Fig. 5. Comparison of performance of R19/LR(3), DT21/DT(3), NN20/NN(3), and SVM21/SVM(3). 
 

4.3 Ensemble models based on different classifiers along with their hyper-parameter settings 
 

The third method for improving risk modeling, model ensembling, is implemented and discussed in this section. 

Starting from LR(3), DT(3), NN(3), and SVM(3), two ensembling techniques including bagging and boosting are 

considered in this study. The models LR(3), DT(3), NN(3), and SVM(3) are considered as base classifiers and the 

performance of the corresponding ensemble models are illustrated in Table 8. In general, ensembling on base 

classifiers including LR, DT, and NN could improve the model performance to some extent compared with the 

corresponding base classifiers. It is observed that by ensembling the base classifier LR, the performance has been 

improved by considering accuracy and FNR measures, with boosting method being superior than bagging. On the 

other hand, bagging on DT results in a decrease in accuracy while an increase in AUC compared with the base DT 

classifier. Both bagging and boosting on NN could further increase AUC and decrease FNR. However, 

ensembling on NN could not further improve accuracy.  
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After ensembling on SVM, the performance does not change with respect to accuracy, FPR, or FNR, indicating 

that SVM might not be an appropriate base learner to be ensembled. Or, we conclude that after FS and hyper-

parameter adjusting, SVM could already reach a performance such that ensembling on SVM cannot further 

improve. 

 

Table 8. Ensemble model performance based on different classifiers after FS and hyper-parameter 

adjusting. LR, DT, NN, and SVM denote logistic regression, decision tree, neural network, and support 

vector machine, respectively. 

 

Model Accuracy AUC FPR FNR 

     

LR(3) 0.948 0.978 0.014 0.145 

LR(4bag) 0.950 0.978 0.014 0.137 

LR(4boo) 0.987 0.936 0.014 0.010 

     

DT(3) 0.985 0.987 0.004 0.043 

DT(4bag) 0.975 0.998 0.021 0.034 

DT(4boo) 0.980 0.997 0.011 0.043 

     

NN(3) 0.973 0.971 0.004 0.085 

NN(4bag) 0.973 0.994 0.007 0.077 

NN(4boo) 0.973 0.984 0.018 0.051 

     

SVM(3) 0.973 0.978 0.011 0.068 

SVM(4bag) 0.973 0.980 0.011 0.068 

SVM(4boo) 0.973 0.981 0.011 0.068 

     

 

4.4 Summary and comparison of model performance after a series of model-improving methods 
 

As mentioned above, this study aims at improving the performance of risk modeling through a series of methods, 

including examining different FS methods, adjusting hyper-parameters of different classifiers, and ensembling on 

the base classifiers. The performance of the models after applying model-improving methods has also been 

discussed. To further investigate the effect of these model-improving methods, we tested the performance of the 

baseline classifiers, i.e., implement the classifiers (LR, DT, NN, and SVM) on the original dataset. These models 

are labelled as LR(1), DT(1), NN(1), and SVM(1) as illustrated in Fig.1. Finally, the performance of the models 

from (1) baseline; (2) after FS; (3) after hyper-parameter adjusting on models obtained from (2); (4) bagging on 

the models obtained from (3); (5) boosting on the models obtained from (3) are summarized in Figs. 6, 7, 8, and 9 

as a visual representation. As presented in these figures, the following results can be expressed based on our 

study: 
 

(1): The three model-improving approaches in general have a positive effect on LR, with FS and model 

ensembling having a larger effect than hyper-parameter adjusting. According to Fig. 6, FS methods can 

significantly in-crease the model accuracy and decrease FNR by comparing LR(1) and LR(2). Compared with 

LR(2), LR(3) does not have much change in accuracy, AUC, FPR, or FNR, indicating that after FS, there is 

minimal effect of adjusting hyper-parameter on model performance. This indicates that model regularization 

through adjusting hyper-parameter ‘alpha’ of LR is not necessary after FS. Ensemble strategies (both bagging and 

boosting) can increase model accuracy and FNR measures, with boosting having a larger effect than bagging. 

However, with respect to FPR, it seems that none of the model-improving methods impact model performance. 
 

(2): DT is not sensitive to any of the model-improving methods. According to Fig. 7, it is interesting to find 

that the baseline DT has the best performance compared to other DTs after applying model-improving methods, 

since the base-line DT can reach the highest accuracy and AUC, as well as the lowest FNR and FPR. This might 

be true because the baseline DT is built on the original dataset that contains all the variables. Moreover, DT is 

relatively powerful in dealing with multicollinearity, therefore retaining all variables will not hurt the model 

performance. 
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(3): The three model-improving approaches in general have a positive effect on NN and they mainly improve 

the performance with respect to FPR and FNR. The beneficial effect on accuracy is negligible. According to Fig. 

8, FS methods can significantly increase the model accuracy and decrease FNR by comparing NN(1) and NN(2). 

This result is the same as that of LR. It is also found that hyper-parameter adjusting can significantly decrease 

FPR while hurt AUC by comparing NN(2) and NN(3). However, hyper-parameter adjusting can improve model 

performance with respect to FPR because NN(3) produces lower FPR than NN(2). It is worth noting that 

ensemble strategies (both bagging and boosting) can further improve model performance after hyper-parameter 

adjusting. This can be confirmed by comparing the AUC and FNR values of NN(3), NN(4), and NN(5). 
 

(4): The three model-improving approaches show a positive effect on SVM. According to Fig. 9, FS can 

increase model accuracy and decrease FNR by com-paring SVM(1) and SVM(2). This result is the same as those 

of LR and NN. SVM(3) shows a higher accuracy and AUC as well as a lower FNR and FPR than SVM(2), 

showing that after FS, adjusting hyper-parameters can further in-crease model performance. SVM(3), SVM(4bag) 

and SVM(4boo) show the same value in accuracy, FPR, and FNR, indicating that after FS and hyper-parameter 

adjusting, model ensemble cannot further improve model performance. 
 

(5): LR(4boo) can reach the highest accuracy and the lowest FNR values among all the models. Recall that in 

Fig. 5, LR(3) shows the lowest accuracy and the highest FNR values compared with DT(3), NN(3), and SVM(3). 

How-ever, after boosting, LR(4boo) becomes the best model. This indicates that the ensembling strategy 

(especially boosting) has the largest effect on LR. As the final result, the optimal candidate model for classifying 

business delinquency in this study is the boosting LR via Relief FS method. 
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Fig. 6. Performance of LR via a series of model-improving methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.gjefnet.com                      Global Journal of Economics and Finance                   Vol. 3 No. 1; February 2019 

44 

 
Fig. 7. Performance of DT via a series of model-improving methods. 
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Fig. 9. Performance of SVM via a series of model-improving methods. 

 

 

5 Conclusion 
 

In this study, we proposed a framework that aims at improving business delinquency modeling via three model-

improving methods: FS along with parameter settings, hyper-parameter adjusting for the classifiers, and model 

ensembling. The feasibility of the framework is assessed on the dataset that contains commercial information of 

de-identified companies in the US from 2006 to 2014. In our experiments, four binary classifiers including LR, 

DT, NN, and SVM are considered. For each classifier, three FS algorithms including weight by Relief, weight by 

information gain, and weight by correlation, are firstly applied on the dataset. By changing the parameters in the 

FS algorithms, each classifier would identify the best FS method along with the appropriate parameter set-tings by 

comparing the model performance resulting from each change of the parameter. Then, hyper-parameters for each 

classifier were adjusted to achieve a better model performance. Finally, model ensembling techniques, including 

bagging and boosting, are implemented on the classifiers. 
 

Based on the dataset used in this study, the model-improving methods in general can improve the performance of 

LR, NN, and SVM. However, the effect varies on different classifiers. The best FS methods for LR, DT, NN, and 

SVM are Relief (‘number of selected features’ valued 20), information gain (‘number of selected features’ valued 

25), Relief (‘number of selected features’ valued 30), and correlation (‘number of selected features’ valued 10), 

respectively. After FS, adjusting hyper-parameters of SVM results in a significant improvement in the model 

performance by considering accuracy, AUC, FPR, and FNR measures. However, model regularization via 

adjusting hyper-parameter ‘alpha’ of LR seems to be unnecessary after applying FS methods. The beneficial 

effect of model-improving methods is obvious on NN with respect to FPR and FNR while negligible in accuracy. 

It is worth noting that after FS and hyper-parameter adjusting, SVM is no longer an appropriate base classifier to 

be ensembled on, since ensembling on SVM cannot further improve model performance. On the contrary, 

ensembling on LR can largely increase its accuracy and decrease its FNR. 
 

Another interesting finding is that DT is not sensitive to any of the model-improving methods and DT built on the 

original dataset has the best performance. The possible reason might be that building DT on the original dataset 

could use all the information contained by the dataset. Furthermore, DT is powerful at dealing with potential 

multicollinearity issues. Therefore, the advantage from keeping all the variables o sets the disadvantage caused by 

the potential multicollinearity issues in the DT classifier. As the final result of this study, the optimal candidate 

model for classifying business delinquency is the boosting LR via Relief FS method. 
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The proposed framework provides a comprehensive approach for simultaneous applications of FS, hyper-

parameter adjusting, and model ensembling techniques to improve the performance of business delinquency 

modeling. Because of using different datasets in the business delinquency classification problems, the results 

might not be consistent in the future studies. However, the proposed framework in this study may serve as a good 

guidance and reference for future researchers when simultaneously using different strategies for improving model 

performance. 
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